

REVOLUTIONIZING PROTON THERAPY WITH THE LIGHT PLATFORM

Compact, precise, and accessible proton therapy through innovative LINAC technology

EXECUTIVE SUMMARY

Liora Technologies has developed LiGHT — **a first-of-its-kind** electronically controlled proton therapy platform that makes advanced cancer treatment safer, more impactful sessions, and dramatically more cost-effective.

\$300M

Development Cost

(CERN / TERA origins /

AVO 11 years of Development)

230 MeV

Proton Beam

Achieved at Daresbury
Electronically adjusts beam
energy **200 times** per second—
no degraders or magnets.

Debt-Free

Acquisition by LIXT:NASDAQ

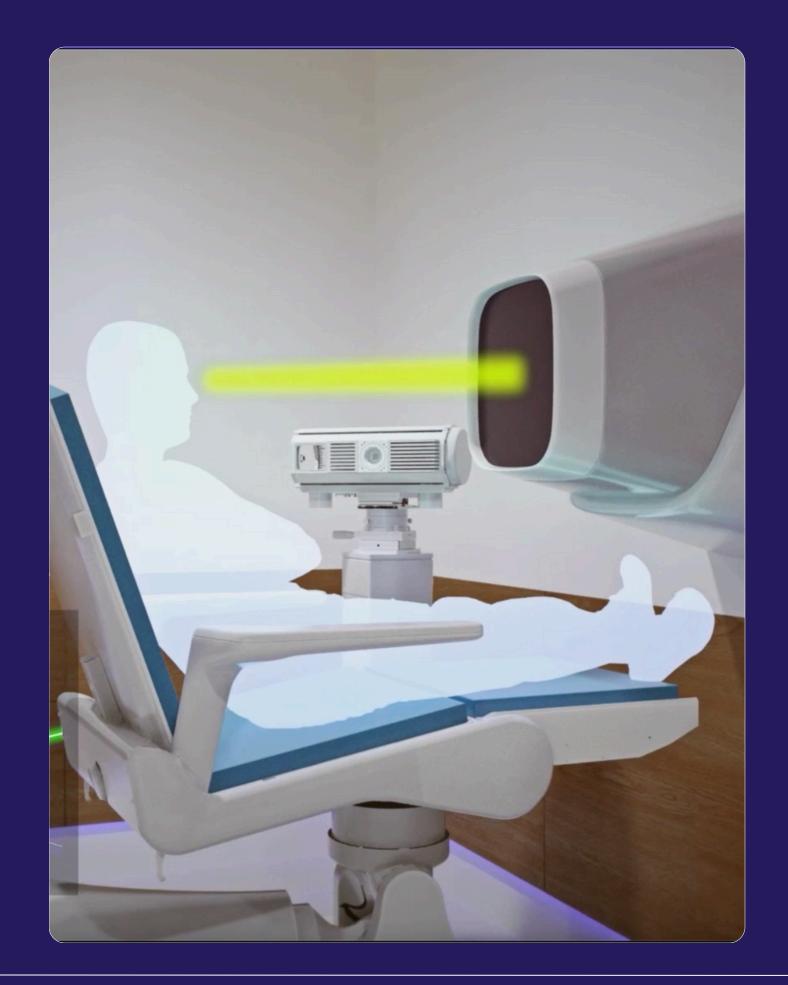
\$500B+

Targeting \$500B+ Oncology Market

9,500-room shortfall

VISION & MISSION

Vision


LiGHT is transforming cancer care by electronically changing proton beam energy in real time — reducing treatment cost, improving outcomes and capacity, minimizing radiation damage to healthy cells, and enabling treatment of tumors near critical organs and in sensitive locations.

Mission

Deliver safer, faster, and more effective proton therapy by electronically adjusting beam energy 200 times per second — improving patient outcomes, minimizing radiation damage to healthy cells, reducing treatment costs to as low as a third of competitors, and increasing capacity to treat more patients.

The Platform — Breakthrough Technology

LiGHT platform

• modular, compact LINAC system that electronically adjusts proton beam energy in real time.

Validated at 230 MeV at Daresbury

- 20 tons vs 90–200 tons legacy gantry systems.
- As low as 30% of competitor system costs (\approx \$85 M vs \$200–300 M for 3-4 rooms).

Future-proof design

- **Hypofractionation:** shorter treatment courses, more patients treated, lower cost of care.
- **FLASH:** once enabled, facilitated/implemented with no hardware change required.

LiGHT's electronically adjustable energy enables near-term Hypofractionation and long-term FLASH — both unlockable by software upgrade, not new hardware.

How the LiGHT System Works

Modular Compact LINAC

Side-Coupled Drift-Tube Linac (SCDTL) +
Coupled Cavity Linac (CCL) architecture for
unprecedented compactness.

Electronically Controlled Beam Energy

Eliminates mechanical degraders, reduces proton loss, enables precise dose conformity.

Integrated Systems

ECR Ion Source + RFQ accelerator + Patient Positioning System in 4-room configuration.

Clinical Versatility

From standard fractionation to ultrahigh-dose rate FLASH therapy — all software-controlled.

Clinical Advantages

Hypofractionation

Same therapeutic dose in fewer sessions → shorter courses and higher throughput.

FLASH potential

Ultra-high dose rates to spare healthy tissue while maintaining tumor control.

Adaptive Energy Control

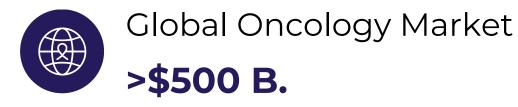
Delivers protons
precisely at tumor depth
without affecting
surrounding cells.

Future-Ready

Software update activates next-gen protocols — no hardware replacement.

Cost & Operational Advantage

Feature	LiGHT	Competitors
System Cost	≈ \$85 M for 4 rooms	\$200–300 M for 3-4 rooms
Weight	< 20 tons	90–200 tons
Construction Time	12–18 months	3–5 years
Proton Loss	< 5 %	90–95 %
FLASH Ready	Yes (via software)	No (physics limit)


- Hypofractionation → same therapeutic dose in fewer sessions.
- Reduced radiation to healthy cells → better outcomes.

- FLASH potential →
 LINAC-only capability.
- 4-room capacity → 1 accelerator powers multiple rooms at a fraction of competitor cost.

Market Opportunity

Average reimbursement per patient \$90 K–\$100 K (US).

Light's Cost Advantage
Install 4 rooms for ≈ 30 % of competitor cost.

Target Segments

Hospitals, Cancer Centers, And
Public-private JV Partners

Business Model — JV Structure with Recurring Revenues

JV Approach

- Liora provides:
 funding/financing for
 equipment, site construction,
 and working capital.
- Partners provide: land, clinical services, and patient access.

Indicative Site Economics

- 3 fractions/hr × 12 hrs/day ×
 300 days × \$3,000/fraction ≈
 \$129.6M per 4-room site.
- US reimbursement ≈ \$90–100K per patient.
- LiGHT system \approx \$85–90M for 4 rooms vs \$200–300M for 1–2.

Revenue Streams

- Revenue/profit share from JVoperated centers.
- Maintenance contracts →
 recurring ≈ \$4.8M per site
 annually (\$1.2M per room ×4).
- Leasing Income

LiGHT's JV model shifts from one-time equipment sales to recurring revenues.

Economic Illustration (4-Room Site)

Competitive Landscape

01

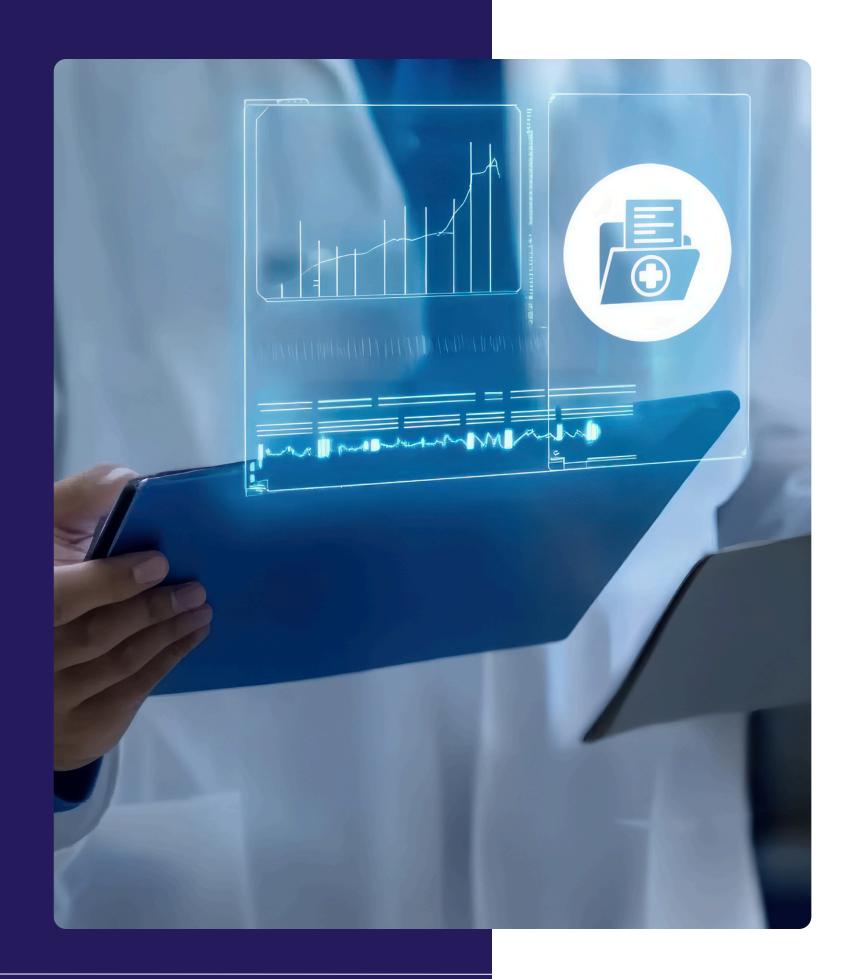
LiGHT

- ≈ **\$85 M for 4 rooms** (≈ 30% of competitors).
- Compact system with lighter shielding and treatment chair.
- Install in 12-18 months.
- Electronically controlled beam energy in real time.
- FLASH once enabled, facilitated/implemented with no hardware change required.

02

Competitors

- \$200–300 M for 3-4 rooms.
- Massive footprint and multi-ton gantries.
- Build time 3–5 years.
- Use degraders + magnets → 90–
 95% protons lost.
- Cannot deliver FLASH (physics limitation).


03

Why LiGHT Wins

- Lower Cost, Faster Setup→ 4-room system at ~30% of competitor cost.
- Compact Design → smaller footprint, lighter infrastructure.
- Higher Throughput→ supports
 Hypofractionation.
- Improved Outcomes higher effective dosage, reduced impact on healthy tissue.
- Future-Proof→ FLASH potential + software enabled evolution

15

Investment Highlights

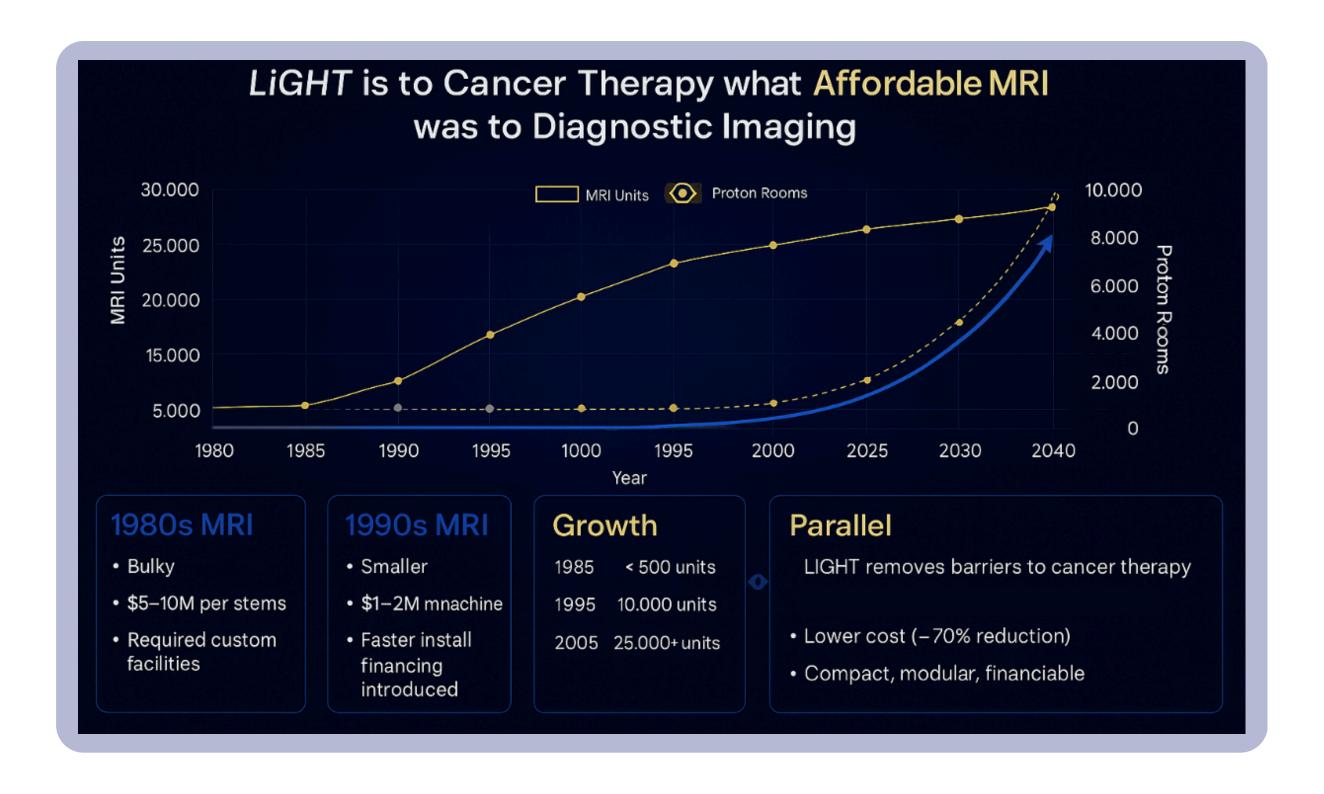
\$300M

development cost already invested in LiGHT platform.

\$500B+

Addressing \$500 B+ oncology market with 9,500-room shortfall.

\$129.6M/yr


per 4-room site Transformational JV model

Share of the ~\$129.6 M yearly revenue per 4-room site.

Near-term
Hypofractionation, longterm FLASH — both via
software upgrade, no
hardware change.

Adoption Analogy — Proton Therapy's MRI Moment

SUSTAINABILITY & IMPACT

Reduces radiation exposure to healthy tissue → improved quality of life.


Shorter treatment courses → less patient travel and energy consumption.

Modular construction → lower material footprint.

Software-based upgrades → extended equipment lifecycle.

Summary & Investment Opportunity

Transformational Technology + Recurring Economics + Global Need

Electronically controlled LINAC — unique in proton therapy.

Validated **230 MeV** energy delivery.

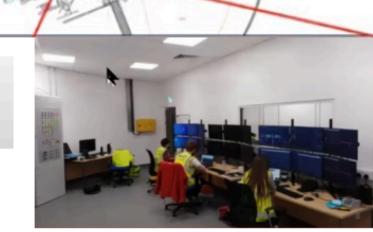
 \approx **30** % of competitor cost, 4× room capacity.

\$129.6M/yr Per Site (Share of JV) +

\$4.8M per site in annual maintenance (\$1.2 M/room)

JV model drives compounding cash flows.

Addressing a share of the 9,500-room worldwide shortfall.


Daresbury Site & Contacts

Daresbury Integration Site

STFC Daresbury laboratory, Daresbury, Warrington

- End-to-end testing: Accelerator & Medical technical systems
- V&V tests

eatment room

Home of the 1st LiGHT platform

Liora Technologies

STFC Daresbury Laboratory,
Keckwick Ln,
Daresbury, Warrington, WA4 4AD,
United Kingdom

Email

IR@LioraTechnologies.com

Website

www.LioraTechnologies.com

Phone

+44 1925 981022